loss_weights 썸네일형 리스트형 Loss weight, Class weight, Sample weight 케라스로 모델을 설계한 다음, 학습시키는 과정에서 적용할 수 있는 weight의 종류는 크게 3개이다. Loss weight model.compile( )에서 "loss_weights" 파라미터를 통해 넣어줄 수 있다. 모델에 2개 이상의 loss functin이 걸리는 경우 사용할 수 있는 파라미터이다. (EX) model.compile(optimizer='adam', loss=['binary_crossentropy', 'mse'], loss_weights=[2, 1]) Class weight 클래스 불균형을 해결하기 위한 방법으로 샘플 수가 상대적으로 적은 Class 쪽에 가중치를 부여하는 방식이 있다. model.fit( )이나 model.fit_generator( )의 "class_weight" .. 더보기 이전 1 다음