Knowledge Distillation 썸네일형 리스트형 Self-evolving vision transformer for chest X-ray diagnosis through knowledge distillation (2022, Nature Communications) 의료 영역에서 주로 사용되는 모델 학습 방식은 지도학습(supervised learning)이다. CXR을 Radiologist가 판독한 결과를 해당 CXR의 정답 데이터(Label)로 학습에 사용한다. 직관적이고 간단한 학습 방법이면서도 모델의 성능 또한 좋게 나와서 의료 영역 뿐만 아니라 여러 영역에서 사용되는 학습 방법이다. 문제는 지도학습 방식에 꼭 필요한 고품질의 Label을 확보하는 과정이 어렵고 비용도 많이 든다는 것이다. CXR 촬영을 루틴으로 진행하는 건강검진센터만 놓고 생각해봐도 하루에 발생되는 CXR의 양은 쏟아지는 수준이다. 이러한 Large-scale CXR Datset의 모든 판독문을 분석해서 Labelling을 진행하는 것이 가장 이상적이겠지만, 기업 입장에서는 비용효율적인 측.. 더보기 이전 1 다음