domain generalization 썸네일형 리스트형 (2) Advancing Medical Imaging Informatics by Deep Learning-Based Domain Adaptation - Divergence minimization Latent Feature Space Transformation에 대해 더 자세히 정리하는 두 번째 글이다. 적어도 4개 정도는 더 써야 원하는만큼의 지식을 챙겨갈 수 있지 않을까 싶다. 모르는 개념도 많고.. 어려워서 공부하는데도 꽤 오랜 시간과 노력이 필요할 것 같다. Latent Feature Space Transformation의 목적은 말 그대로 network를 통해 추출되는 feature들을 사용해서 DA를 하는 것이다. 예를 들어 CNN에서는 여러 개의 convolutional layer를 거쳐 feature map들이 생성될텐데, Latent Feature Space Transformation에서는 DA를 위해서 이 feature map들을 어떻게 해보겠다는 거다. 적절한 feature m.. 더보기 (1) Advancing Medical Imaging Informatics by Deep Learning-Based Domain Adaptation 정리 시작 Medical Image Dataset에서는 환자 케이스, 촬영 장비, 촬영 방식 등과 같은 다양한 요인에 의해 distribution-shift (also known as domain-shift) 현상이 발생한다. 그리고 이 domain-shift 현상이 모델의 성능을 꽤 많이 떨궈서 성능 문제로 이어지게 된다. Hospital A에서 수집된 데이터셋으로 개발된 모델이 AUC 0.99를 찍었다 하더라도, Hospital B 데이터셋에서는 AUC 0.7도 안 나오는 현상이 발생한다. Domain-shift 현상 때문이다. 당연하게도 이 문제점을 해결하기 위해 많은 연구들이 진행되었고, "Domain Generalization (DG)" 또는 "Domain Adaptation (DA)"의 키워드로 검색하면.. 더보기 이전 1 다음